
International Journal of Management, IT & Engineering
Vol. 7 Issue 12, December 2017,

ISSN: 2249-0558 Impact Factor: 7.119

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial

Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s

Directories of Publishing Opportunities, U.S.A

274 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

LEXICOGRAPHICAL ORDER/SORTING USING BOOST

LIBRARY IMPLEMENTATION

Jayant Kumar
*

ABSTRACT:

Background:

 the lexicographic or lexicographical order (also known as lexical order,
dictionary order, alphabetical order or lexicographic(al) product) is a generalization of
alphabetically ordered based on the alphabetical order of their component letters.

This generalization means that the order is not based on alphabetical order but based
on relationship between two letters or entities.

Example:
 Given that r < c, c < a, r < m, m < c

So, the lexicographical order would be r,m,c,a

INTRODUCTION

Boost provides free peer-reviewed portable C++ source libraries. We can create an
Adjacent graph by using boost adjacency list.

So, if we have relationship like r < c and further relationship to create graph as below.

We can apply topological sorting to get a ordered list.

Topological sorting for Directed Acyclic Graph (DAG) is a linear ordering of vertices such
that for every directed edge uv, vertex u comes before v in the ordering.

Since Boost is a C++ library, we will use C++ for implementation.

* Director of Platform Integration and Architecture, Bidtellect Inc., Delray Beach, USA - 33432

r c

m

a

ISSN: 2249-0558 Impact Factor: 7.119

275 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

IMPLEMENTATION:

Let’s implement the same by using a file which will provide relationship between
letters.
The file is comprised of a sequence of words that are arranged in alphabetical order (
for some arbitrary alternate alphabet)

File will have content like as below.

rcrtv
rcrmb
rcrdsfd
rcxrbw
rcxrbws
rcxrbwn
rcxrbkdz
rsqxbwarbw
rsqxbwarbws
rsqxbwarbwn
rsqxbwarbkdz
rsqxbwawa
rsqxbwawan
rsqxbwafqn
rsqxbwafqnxh
rjwdkbkwn
rjwdkbh
rjwdfaapwr
rjwaktkqj
rjkrcxw
rjktrcxw
rjktrcxh
rjks
rjksw
rjksnb

By reading each word one by one, we find the relationship between two letters and
created a directed graph.
Once we are done reading all words, we will apply topological sort to get final output.

Implementation is divide into various steps.

STEP1:

Let’s create a header file named “LexcoSorting.h” as below.
We will be declaring labeled_graph Graph which will be used to create graph while reading
various words from give file and fnding relationship between two letters.
vertex_iter would be used to traversed through various vertex of the graph
AddVertex would be used to add new vertex if vertex doesn’t exist in the graph
AddEdge would be used to add Edge between two give vertex

ISSN: 2249-0558 Impact Factor: 7.119

276 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

#ifndef LexcoSorting_H

 #define LexcoSorting_H

 #include "boost/graph/adjacency_list.hpp"

 #include "boost/graph/labeled_graph.hpp"

 #include "boost/graph/topological_sort.hpp"

 #include <deque>

 #include <iterator>

 #include <iostream>

 #include <fstream>

 #include <string>

 using namespace std;

 using namespace boost;

 class LexcoSorting

 {

 struct VertexProperty

 {

 char c_literal;

 };

 typedef boost::labeled_graph<boost::adjacency_list< boost::vecS,

boost::vecS, boost::directedS,VertexProperty>,char> Graph;

 typedef boost::adjacency_list<>::vertex_descriptor Vertex;

 //typedef boost::labeled_graph<boost::setS,

boost::vecS,boost::directedS,VertexProperty> Graph;

 typedef boost::graph_traits<Graph>::vertex_iterator vertex_iter;

 typedef std::vector<Graph::vertex_descriptor> Vcontainer;

 Graph g;

 // list<Vertex> lVertex = new list<Vertex>(30);

 void AddVertex(char c_temp);

 void AddEdge(char sFirst,char sSecond);

 void PrintOutPut();

ISSN: 2249-0558 Impact Factor: 7.119

277 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

 public:

 string Compare(string sPrevious,string sCurrent);

 void Execute(string sInputFile);

 };

 #endif // LexcoSorting_H

STEP2:

Create Another file LexcoSorting.cpp with below code which will define all methods

declared in LexcoSorting.h

AddVertex – Add a new vertex in the graph

PrintOutPut – Apply topological sort and prints the final sorted output

AddEdge – Add Edge between two letters passed as input

Compare – Compare two strings and find the relationship (order) between two letters by
comparing two words as both words are in alphabetical order.

Execute: It’s the main method which read word by word in the file and create Vertex if
it doesn’t exist or compare previous and current letters and create Edge between two if
doesn’t exist already.

Code:

#include "LexcoSorting.h"

 void LexcoSorting::AddVertex(char c_temp)

 {

 VertexProperty v1 ;

 v1.c_literal = c_temp;

 //Vertex vtemp = boost::add_vertex(c_temp,g);

 boost::add_vertex(c_temp,v1,g);

 //g[boost::add_vertex(c_temp,g)].c_literal = c_temp;

 }

 void LexcoSorting::AddEdge(char sFirst,char sSecond)

 {

 boost::add_edge_by_label(sFirst, sSecond, g);

 }

ISSN: 2249-0558 Impact Factor: 7.119

278 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

 void LexcoSorting::PrintOutPut()

 {

 Vcontainer c;

 Vcontainer::iterator ii;

 topological_sort(g.graph(), std::back_inserter(c));

 std::cout << "A topological ordering: ";

 for (ii=c.begin(); ii!=c.end(); ++ii)

 {

 //cout << *ii << " ";

 //cout << *ii << " ";

 cout << g.graph()[*ii].c_literal << " ";

 }

 }

 string LexcoSorting:: Compare(string sPrevious,string sCurrent)

 {

 string op;

 int cnt=0,i=0;

 while(sPrevious[i] !='\0' || sCurrent[i] !='\0')

 {

 if(sPrevious[i] == sCurrent[i]) {

 cnt = 1;

 }

 else {

 break;

 }

 i++;

 }

 if(cnt > 0) {

 op[0] = sPrevious[i];

 op[1] = sCurrent[i];

 op[3] = '\0';

 }

 return op;

 }

ISSN: 2249-0558 Impact Factor: 7.119

279 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

 void LexcoSorting::Execute(string sInputFile)

 {

 /* //For Testing

 AddVertex('a');

 AddVertex('b');

 AddVertex('c');

 AddVertex('d');

 AddEdge('a','b');

 AddEdge('d','c');

 AddEdge('b','c');

 //AddEdge('a','b',*g);

 PrintOutPut();*/

 std::ifstream infile(sInputFile);

 std::string strcurrent,strprevious,strCompare;

 while (std::getline(infile, strcurrent))

 {

 if(!strcurrent.empty())

 {

 if(strprevious.empty())

 {

 for(char& c : strcurrent) {

 AddVertex(c);

 }

 }

 else

 {

 strCompare = Compare(strprevious,strcurrent);

 if(!strCompare.empty())

 {

 AddEdge(strCompare[0],strCompare[1]);

 }

 AddVertex(strCompare[0]);

 AddVertex(strCompare[1]);

 }

 strprevious = strcurrent;

 //cout << strcurrent;

 //file_contents.push_back('\n');

 }

ISSN: 2249-0558 Impact Factor: 7.119

280 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

 }

 PrintOutPut();

 }

STEP3:

Edit/Create file main.cpp which would be the main file compiled and executed. It will
take path of the input file which have alphabetical order of words.

Code:

#include <iostream>

 #include "LexcoSorting.h"

 #include <exception>

 using namespace std;

 int main()

 {

 try

 {

 LexcoSorting l;

 cout << "Enter File Path and Name" << endl ;

 char cfilename[200];

 cin.getline(cfilename,sizeof(cfilename));

 cout << "File Name : " << cfilename << endl;

 l.Execute(cfilename);

 getchar();

 //"C:\\Users\\Jayant Kumar\\Documents\\alphabet.txt");

 }

 catch (const std::exception& e)

 {

 cout << e.what() << endl;

 }

 return 0;

 }

STEP4:

Create a makefile with below code to compile the program which declare all
dependencies.

ISSN: 2249-0558 Impact Factor: 7.119

281 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Code:

compiler:

 CC = g++

 # compiler flags:

 CFLAGS = -std=c++11 -g -Wall

 #Linking Flag

 LFLAGS = -Wall

 INCLUDES = -I C:/boost_1_59_0 -I C:/MinGW -I C:/boost_1_59_0/boost/graph

 LIBS =

 # the build target executable:

 TARGET = Lexicograph

 $(TARGET): main.o LexcoSorting.o

 $(CC) $(CFLAGS) -o $(TARGET) main.o LexcoSorting.o

 main.o: main.cpp LexcoSorting.h

 $(CC) $(INCLUDES) $(CFLAGS) -o main.o -c main.cpp

 LexcoSorting.o: LexcoSorting.cpp LexcoSorting.h

 $(CC) $(INCLUDES) $(CFLAGS) -c LexcoSorting.cpp

 clean:

 $(RM) $(TARGET) *.o *~

USE CASE AND IMPACT:

 GENETIC SCIENCE:
It can be used to create genetic database as if we know relationship like FATHER
-> SON, MOTHER-DAUGHTER we can get entire genetical order.

HEALTH CARE:
We can also create use the relationship between cause and symptom of a
disease. That information can be used to order the symptoms of disease in a
perfect order and we can keep track of hour health and discover any disease in
early stages.

ISSN: 2249-0558 Impact Factor: 7.119

282 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

CRIMINOLOGY;
Same techinque can be applied to various crime cases and we can solve few
complex criminal cases by ordering every aspect and story point of a crime.

REFERENCES

[1] https://en.wikipedia.org/wiki/Lexicographical
_order

[2] http://www.boost.org/
[3] http://www.boost.org/doc/libs/master/libs/gr

aph/doc/adjacency_list.html
[4] https://en.wikipedia.org/wiki/Glossary_of_gr

aph_theory_terms#adjacent
[5] http://www.geeksforgeeks.org/topological-

sorting/
[6]

https://en.wikipedia.org/wiki/Lexicographical_order
https://en.wikipedia.org/wiki/Lexicographical_order
http://www.boost.org/
http://www.boost.org/doc/libs/master/libs/graph/doc/adjacency_list.html
http://www.boost.org/doc/libs/master/libs/graph/doc/adjacency_list.html
https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#adjacent
https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#adjacent
http://www.geeksforgeeks.org/topological-sorting/
http://www.geeksforgeeks.org/topological-sorting/

